Test ideals in local rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Good Ideals in Gorenstein Local Rings

Let I be an m-primary ideal in a Gorenstein local ring (A,m) with dimA = d, and assume that I contains a parameter ideal Q in A as a reduction. We say that I is a good ideal in A if G = ∑ n≥0 I n/In+1 is a Gorenstein ring with a(G) = 1−d. The associated graded ring G of I is a Gorenstein ring with a(G) = −d if and only if I = Q. Hence good ideals in our sense are good ones next to the parameter...

متن کامل

Parameter Test Ideals of Cohen Macaulay Rings

The main aim of this paper is to provide a description of parameter test ideals of local Cohen-Macaulay rings of prime characteristic p. The nature of this description will be such that it will allow us to give an algorithm for producing these ideals. The results in this paper will follow from an analysis of Frobenous maps on injective hulls of the residue fields of the rings under consideratio...

متن کامل

Frobenius Test Exponents for Parameter Ideals in Generalized Cohen–macaulay Local Rings

This paper studies Frobenius powers of parameter ideals in a commutative Noetherian local ring R of prime characteristic p. For a given ideal a of R, there is a power Q of p, depending on a, such that the Q-th Frobenius power of the Frobenius closure of a is equal to the Q-th Frobenius power of a. The paper addresses the question as to whether there exists a uniform Q0 which ‘works’ in this con...

متن کامل

Integral Closure of Ideals in Excellent Local Rings

In [1] Briançon and Skoda proved, using analytic methods, that if I is an ideal in the convergent power series ring C{x1, . . . , xn} then In, the integral closure of I, is contained in I. Extensive work has been done in the direction of proving “Briançon-Skoda type theorems”, that is, statements about I t being contained in (I t−k)#, where k is a constant independent of t, and # is a closure o...

متن کامل

Complete Ideals in 2-dimensional Regular Local Rings

The objective of these notes is to present a few important results about complete ideals in 2–dimensional regular local rings. The fundamental theorems about such ideals are due to Zariski found in appendix 5 of [26]. These results were proved by Zariski in [27] for 2dimensional polynomial rings over an algebraically closed field of characteristic zero and rings of holomorphic functions. Zarisk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1995

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-1995-1311917-0